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Abstract
Density-functional studies of structural and electronic properties of transition-
metal sulfides formed by 3d transition metals, based on the local spin-
density approximation and including non-local corrections to the exchange–
correlation functional (generalized gradient approximation),have demonstrated
the importance of magneto-volume effects and magneto-structural effects, but
could not achieve full agreement with experiment. A further improvement is
to consider electronic correlation effects due to tightly bound and localized
d-states on the transition metal atoms. With the DFT + U method used in
this work, these correlation effects are taken in account and yield improved
predictions for volume, magnetic moment, exchange splitting and bandgap.
For MnS the semiconducting gap is correctly predicted, and for MnS2 the high-
spin AFM type-III state can be stabilized over the low-spin state. For FeS even
weak correlation effects lead to better predictions for the semiconducting gap,
volume and magnetic moment.

1. Introduction

Transition-metal sulfides (TMSs) form an important class of inorganic compounds with
manifold applications in industry, ranging from catalysis over lubrication to corrosion
protection. In recent years, the use of TMSs as catalysts for the hydro-desulfurization of
fuels has been studied with particular interest [1–3]. It was shown that whereas for the 4d and
5d TMSs the catalytic activity reaches a maximum for an approximately half-filled d band, the
activity of the homologous 3d compounds remains very low throughout the series.

Raybaud et al [2] have performed a comprehensive investigation of the structural, cohesive
and electronic properties of more than 30 TMSs in the local density approximation (LDA). Their
calculations demonstrated that the overbinding tendency of the LDA (prediction of too small
atomic volumes and too large cohesive energies) is particularly pronounced for the TMSs. For
the 4d and 5d TMSs, the overbinding is largely corrected by including non-local corrections
in the form of a generalized gradient approximation (GGA). For the 3d TMSs, Hobbs and
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Hafner [5] reported the existence of strong magneto-structural effects. However, the local
spin-density approximation (LSDA) supplemented by gradient corrections does not lead to
a satisfactory description of the physical properties for all 3d TMSs; CrS is well described
as an itinerant antiferromagnet with a substantial magneto-volume effect (7% increase due
to magnetic ordering), MnS is correctly predicted to be an antiferromagnetic semiconductor
with a very large magneto-volume effect (≈21%), but the width of the semiconducting gap, the
exchange splitting and the magnetic moments are underestimated (even the equilibrium volume
is still too small by about 7%). This indicates the importance of intra-atomic correlation effects
similar to those found to those found in the 3d monoxides [6]. In MnS2 the spin-polarized
GGA calculations predict a stable antiferromagnetic low-spin ground state and a metastable
high-spin state at expanded volume. The structural parameters for this high-spin state are much
closer to those observed experimentally, and it was suggested that the high-spin state could
possibly be stabilized by rather strong intra-atomic correlations.

FeS undergoes phase transitions from the troilite to the MnP-type and NiAs-type structures
under compression, which is correctly predicted by the LSDA + GGA calculations. Important
discrepancies between theory and experiments exist nevertheless: (i) the absence of a
semiconducting gap, too small exchange splitting, (ii) too low magnetic moment and (iii) too
small equilibrium volume. FeS2 is correctly described as a semiconductor, CoS and CoS2

are metallic and correctly described as non-magnetic and as a weak itinerant ferromagnet,
respectively. NiS and NiS2 are antiferromagnetic Mott insulators, but predicted to be non-
magnetic and metallic in LSDA calculations.

Hence it appears that the TMSs are intermediate between the transition-metal oxides,
whose properties are determined by strong correlation effects [6], and transition-metal
selenides, showing a variety of electronically induced structural phase transitions [13]. An
approximate description of strong intra-atomic correlation effects is provided by the DFT + U
approach where on-site Coulomb and exchange interactions described in an unrestricted
Hartree–Fock approximation are added to the DFT Hamiltonian [12]. In the present work
we apply the DFT + U as formulated by Dudarev et al [9] to the investigation of the structural
and electronic properties of several 3d TMSs. Both the LDA and the GGA are used as a
starting point. Our paper is organized as follows: in section 2 we review very briefly the
foundation of the DFT + U method and we describe its implementation in the Vienna ab initio
simulation package VASP. Sections 3–5 describe the application to MnS, MnS2 and FeS and
we summarize in section 6.

2. Theoretical methods

2.1. DFT + U method

Transition-metal compounds like NiO experience a strong on-site Coulomb repulsion amongst
Ni 3d electrons due to the narrow d bandwidth, which is not correctly described in a spin-
polarized DFT treatment. This error can be corrected with the DFT + U method, which is
a combination of the DFT and a Hubbard Hamiltonian for the Coulomb repulsion. For the
present calculations we use a simple DFT + U version, proposed by Dudarev et al in [9]. It is
based on a model Hamiltonian with the form [10]

Ĥ = U

2

∑
m,m′ ,σ

n̂m,σ n̂m′,−σ +
(U − J )

2

∑
m �=m′ ,σ

n̂m,σ n̂m′,σ ; (1)

n̂mσ is the operator yielding the number of electrons occupying an orbital with magnetic
quantum number m and spin σ at a particular site.
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The Coulomb repulsion is characterized by a spherically averaged Hubbard parameter
U describing the energy increase for placing an extra electron on a particular site, U =
E(dn+1) + E(dn−1) − 2E(dn), and a parameter J representing the screened exchange energy.
While U depends on the spatial extent of the wavefunctions and on screening, J is an
approximation of the Stoner exchange parameter and almost constant, ∼1 eV [11]. The
Mott–Hubbard Hamiltonian includes energy contributions already accounted for by the DFT
functional. To correct for this ‘double-counting’, equation (1) is evaluated in the limit of integer
occupancies and subtracted from the DFT energy to obtain the spin-polarized DFT + U energy
functional [9, 11]. A simple functional is obtained after some straightforward algebra [9]:

EDFT +U = EDFT +
U − J

2

∑
mσ

(nmσ − n2
mσ ). (2)

This energy functional is yet not invariant with respect to a unitary transformation of the
orbitals. A formulation given by Lichtenstein et al [12] replaces the number operator by the
on-site density matrix ρσ

i j of the d electrons to obtain a rotationally invariant energy functional.
In the present case this yields the functional [9]

EDFT +U = EDFT +
U − J

2

∑
σ

Tr[ρσ − ρσ ρσ ]. (3)

The interpretation of this DFT+U functional is particularly simple. In the limit of an idempotent
on-site occupancy matrix ρσ

ρσ 2 = ρσ

the DFT+U functional yields exactly the same energy as the DFT functional EDFT+U = EDFT .
The second term in equation (3) forces this idempotency. If U > J , the term is positive definite,
since the eigenvalues εi of the on-site occupancy matrix can vary only between zero and unity.

ρσ − ρσ ρσ =
∑

i

εσ
i − εσ

i
2 > 0

where the sum on the right-hand side is over all eigenvalues εi of the on-site occupancy
matrix ρσ . Hence the second term in equation (3) can be interpreted as a positive definite
penalty function driving the on-site occupancy matrices towards idempotency. The DFT + U
energy obtained in this manner is always larger than the DFT energy. The ‘strength’ of the
penalty function is parametrized by a single parameter U − J . A larger U − J forces a stricter
observance of the on-site idempotency. This is achieved by lowering the one-electron potential
locally for a particular metal d orbital and in turn reducing the hybridization with e.g. O atoms:
the one-electron potential is given by the functional derivative of the total energy with respect
to the electron density, i.e. in a matrix representation

V σ
i j = δEDFT +U

δρσ
i j

= δEDFT

δρσ
i j

+ (U − J )

[
1

2
δi j − ρσ

i j

]
. (4)

It is recognized that filled d orbitals which are localized on one particular site are moved to
lower energies, by −(U − J )1/2, whereas empty d orbitals are raised to higher energies by
(U − J )1/2.

2.2. Implementation within the projector-augmented wave method

The DFT + U method is implemented in the projector-augmented wave (PAW) method as
described by Bengone et al [16]. In the PAW method, the all-electron wavefunction �n is
related to the pseudo-wavefunction �̃n through a linear transformation [14, 15]:

|�n〉 = |�̃n〉 +
∑

i

(|φi〉 − |φ̃i〉)〈 p̃i |�̃n〉. (5)
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The index i is a shorthand for the atomic site R, the angular momentum numbers L = l, m
and an additional index n referring to the reference energy εnl . The all-electron partial waves
φi are solutions of the Schrödinger equation for a spherical symmetric reference atom, and the
pseudo partial waves φ̃i are equivalent to the AE partial waves outside a core radius rc and
match continuously onto φ̃i inside the core radius. The projector functions p̃i are dual to the
partial waves:

〈 p̃i |φ̃ j〉 = δi j .

Starting from equation (5) it is possible to show that the AE charge density is given by a sum
of three terms in the PAW method (for details we refer to [14] and [15]):

n(r) = ñ(r) + n1(r) − ñ1(r). (6)

Here, ñ is the soft pseudo charge density related directly to the pseudo-wavefunctions �̃n. The
on-site charge densities n1(r) and ñ1(r) are only defined inside spheres with radius rc centred
around each atom (PAW spheres). For the densities n1(r) and ñ1(r) the following defining
equations are obtained:

n1(r) =
∑
(i, j)

ρP AW
i j 〈φi |r〉〈r|φ j〉, (7)

and

ñ1(r) =
∑
(i, j)

ρP AW
i j 〈φ̃i |r〉〈r|φ̃ j〉. (8)

The matrix ρP AW
i j describes the occupancies of each augmentation channel (i, j), and is

calculated by multiplication of the pseudo density operator with the projector functions from
the left and right:

ρP AW
i j =

∑
n

fn〈�̃n| p̃i〉〈 p̃ j |�̃n〉. (9)

For a complete set of partial waves, the density n1(r) is exactly equivalent to the exact all-
electron charge density within the PAW sphere,

n(r) = n1(r)

which is the crucial relation on which the present implementation of the DFT + U method
rests.

To derive the PAW + U method, one needs to define the orbital density matrix ρmm′

entering equation (3). The natural definition is based on the AE charge density inside the PAW
augmentation spheres, n1(r), which can be written more explicitly as

n1(r) =
∑

(lmn),(l′m′n′)
ρPAW

(lmn),(l′m′n′)〈φlmn |r〉〈r|φl′m′n′ 〉,

with the restriction to l and l ′ = 2, one can therefore relate the on-site density matrix ρmm′ to
the PAW on-site occupancy matrix ρP AW

(lmn),(lm′n′) through

ρmm′ =
∑
nn′

ρP AW
(lmn),(lm′n′)〈φlmn |φl′m′n′ 〉.

This establishes the crucial link between the PAW and the DFT+U method. For further details
the reader is referred to [16].
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2.3. Further computational details

The calculations in this work were performed with the Vienna ab initio simulation package,
VASP [15, 20–23]. VASP is a first-principles plane-wave code, treating exchange and
correlation in the DFT scheme. The PAW method [14] in the implementation of Kresse
and Joubert [15] is used to describe the electron–ion interaction. At the level of the LDA, the
exchange–correlation functional proposed by Perdew and Zunger [24] (based on the quantum
Monte Carlo calculations of Ceperley and Alder [25]) is used. Generalized gradient corrections
are added in the form of the Perdew–Wang [27] functional. For spin-polarized calculations,
the spin interpolation of Vosko et al [26] was used. The Kohn–Sham equations are solved via
iterative matrix diagonalization based on the minimization of the norm of the residual vector
to each eigenstate and optimized charge- and spin-mixing routines [28–30].

To sample the band structure, the Brillouin zone integration is performed using
Monkhorst–Pack grids [31]. The unit cells are usually extended in one direction due to
symmetry breaking in antiferromagnetic set-ups. k-point grids varying from 3 × 3 × 1 to
6×6×4 were used. The densities of states (DOSs) were calculated using the linear tetrahedron
method. For the calculation of the total energy as a function of volume, a Gaussian-smearing
approach with σ = 0.2 eV was used. The plane-wave cut-off was fixed to 330 eV. The
DFT + U version of Dudarev et al [9] described above was used for all calculations. Since the
DFT + U functional depends only on the difference U − J , J was kept fixed to 1 eV during
all calculations. The U − J = 0 case represents the DFT limit.

3. Mn monosulfide

MnS takes the NaCl structure with an experimental unit cell volume of 17.99 Å3. It is a type-II
antiferromagnet with a magnetic moment of µMn = 4.54 µB , which is near the saturation
value of 5 µB according to the Hund rule. MnS is a Mott–Hubbard insulator with a bandgap
of about 2.7 eV. The exchange splitting is around 8 eV.

Spin-polarized calculations with the GGA method [5] have stabilized an antiferromagnetic
type-II ground state with a magnetic moment µMn = 4.08 µB but with � = 16.79 Å3 the
volume was underestimated by 7%. The bandgap of about 1 eV and the exchange splitting
of 4.2 eV are too small compared to experimental values. Non-spin-polarized calculations
by Raybaud et al [2] had underestimated the volume by 33% for LSDA and by 27% for
GGA. Taking into account spin polarization already leads to a substantial improvement in
the GGA results, showing the existence of a strong magneto-volume effect. Hartree–Fock
(HF) calculations by Hines et al [32] gave an antiferromagnetic type-II ground state and
overestimated both the equilibrium volume (by 12%) and the magnetic moment at the optimized
structure (µMn = 4.92 µB ). The exchange splitting was grossly overestimated with the filled
spin-up Mn 3d band at 8 eV below the Fermi level and the lower edge of the empty spin-down
Mn 3d band at +11 eV. More recent HF calculations by Tappero et al [33, 34] have shown
that correlation corrections to the HF energy could reduce the volume mismatch by 2.5% and
the large bandgap from 11 to 1.5 eV, whereas the magnetic moment remained at values very
close to the Hund limit of 5 µB .

Our DFT + U calculations were done with a fixed exchange parameter J = 1; the on-site
Coulomb interaction U was varied from 1 to 10 eV, using both the LDA and the GGA as a
starting point.

These results show evidence for the necessity of taking the intra-atomic correlations
between the d electrons into account. Increasing the U parameter, one can observe that
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bandgap, magnetic moment and volume increase (see figure 1). In the LDA + U , the
experimental value of the volume cannot be reached even with large U (∼10 eV). But
bandgap and magnetic moment reach a break-even with experiment for U − J between 5
and 8 eV (see figure 1). For U − J = 8 eV, the volume is increased by ∼10% compared
to the LDA, still underestimating the experiment by 3%. This comparison suggests that a
reasonable choice for the U parameter (J is fixed at 1 eV) in the LDA + U lies between 6
and 7 eV, which is less than values usual for strongly correlated transition metal oxides. For
MnO the appropriate choice is U − J = 10 eV (see [5]). As the GGA already produces
a larger atomic volume, a slightly increased magnetic moment and a small energy gap, a
significantly weaker on-site Coulomb interaction is sufficient to close the gap between theory
and experiment: U − J ≈ 2 eV for the volume, U − J = 3 eV for the magnetic moment—
for the bandgap, complete agreement with experiment can only be reached for very large U .
Hence it appears that within the semiempirical DFT + U approach, whether in the form of a
LDA + U or a GGA + U , not all physical properties can be fixed with a single value of the
on-site interaction. However, the bandgap problem and the electronic structure deserve further
investigation. The density of states for both occupied and empty bands is displayed in figure 2.
We find that with increasing U both the occupied majority-spin Mn 3d band and the empty
minority-spin band are shifted away from the Fermi level, increasing the exchange splitting.
However, as the S p band hybridizing with the occupied Mn 3d states is not affected by the
Mn on-site interactions, the bandgap widens only moderately. In both the LDA + U and the
GGA + U the electronic DOS for U − J = 6 eV shows a 3d exchange splitting of ∼9 eV
and a bandgap of around ∼2.2 eV (see figure 2). While the bandgap is slightly lower than
the experimental value, the exchange splitting (defined in terms of the positions of the most
prominent peaks of the DOS of the majority and minority bands) is overestimated as indicated
by the location of the occupied 3d states in comparison with measured UPS spectra [35]. UPS
spectra measured at photon energies of 40.8 eV place the peak of the 3d band at −3.7 eV,
whereas the peak of the calculated density of states is located at −5 eV. Figure 3 shows a
comparison of the experimental and calculated UPS spectra; the theoretical UPS spectrum is
calculated as a weighted average of the partial DOSs, using the photoionization cross sections
of Yeh and Landau [36]. Good agreement between theory and experiment can only be reached
for a relatively weak on-site interaction of U − J ∼ 2 eV; for stronger on-site interactions
the dominant peak is shifted to too high binding energies. However, it must also be pointed
out that the intensity at the lower edge of the conduction band is rather flat—it is therefore
plausible that the calculated gap is narrower than the experimental values determined by optical
or spectroscopic techniques.

Our results for MnS illustrate a dilemma quite characteristic of the semiempirical DFT+U
approaches. Although qualitatively the Coulomb corrections go in the proper direction,
different values of U are required to fit different quantities. This problem is particularly
acute in the LDA + U where the values of the on-site potential required to achieve agreement
with experiment increase from the d-band position (U ∼ 3.5 eV) to the magnetic moment
(U ∼ 5 eV), the bandgap (U ∼ 8–9 eV) and the equilibrium volume (U � 9 eV). In the GGA
these discrepancies are less pronounced: U − J ∼ 3±1 eV leads to reasonable predictions for
atomic volume, magnetic moment, exchange splitting and d-band position—only a bandgap
in agreement with experiment seems to require a much larger U . This remaining deficiency
has to be blamed on the fact that pure on-site corrections leave the S states almost unaffected:
on going from the GGA to the GGA + U , the character of the bandgap changes from an Mn
d/d gap to a S p/Mn d gap (cf our figure 2 with 3 in [5]). Altogether the GGA + U is found to
be largely superior to the LDA + U .
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Figure 1. Atomic volume, magnetic moment, bandgap and exchange splitting in MnS, calculated
in the LDA + U and GGA + U approximations as a function of the on-site Coulomb interaction.
Experimental values are indicated by horizontal lines.

4. Mn disulfide

According to experiment, MnS2 is a Mott insulator with a gap of 1 eV (see [40]) and crystallizes
in a pyrite (FeS2-type) crystal structure with a volume of 18.83 Å/atom and a bulk modulus
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Figure 2. Spin-polarized DOS of the Mn d–S p band complex near the Fermi level in MnS
calculated in the GGA + U for U − J = 2 and 6 eV (broken and full curves respectively).

Figure 3. Measured valence-band photoemission spectrum of MnS (hν = 40.8 eV) and estimate of
the photoemission spectra calculated as a weighted average of the partial DOSs with photoionization
cross-sections from [36]. Calculations have been performed in the GGA+U , using different values
of the on-site Coulomb interaction.

of 76.6 GPa (see [41]). Below TN = 48 K, it is antiferromagnetic of type III with a magnetic
moment of µMn close to the Hund’s-rule limit of 5 µB . GGA calculations [5] predicted MnS2

to be a zero-gap semiconductor with a low-spin AFM type-III state with a magnetic moment
of µMn = 1.4 µB and an equilibrium volume of 14.2 Å/atom. A high-spin AFM ground state
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with magnetic moment of µMn = 3.8 µB could be found at a volume of 17.5 Å/atom, but
the low-spin state was more stable. In the high-spin case, there is still a volume discrepancy
of about 7%. The magnetic moment is underestimated by about 15%. The high-spin/low-
spin transition is coupled to a structural distortion leading to shorter S–S distances in better
agreement with experiment.

DFT + U calculations can stabilize the high-spin AFM ground state, and give better
volume and magnetic moment estimations. Figure 4 shows the variation of volume, energy
gap, magnetic moment and S–S dimer length with increasing U − J . In the LDA + U , full
agreement with the experimental atomic volume cannot be achieved even with strong on-site
interactions of U around 9 eV. The magnetic moment is not very accurately known, but at
U around 6–7 eV the calculated moment is already only 10% below the limit set by Hund’s
rule. The observed width of the semiconducting gap is already reached at U − J around 4 eV.
Again in the GGA + U a much smaller value of the on-site potential of U − J ∼ 2 eV is
sufficient to get an atomic volume and bandgap in agreement with experiment. The internal
structural parameter u fixing the length of the S–S dimers characteristic for the pyrite structure
is found to be independent of U in both approximations and slightly larger than found in the
experiment. At moderate U a high-pressure low-spin phase coexists with the stable high-spin
phase at ambient conditions. This is illustrated in figure 5 displaying the volume dependence of
the internal energy, the magnetic moment and the S–S distance for fixed U − J . For GGA + U
and U − J ∼ 2 eV, we find a discontinuous structural and magnetic phase transition at a
critical pressure of pC ∼ 11 GPa, resulting in a volume change of 	V ∼ 3 Å3, a drop in
the magnetic moment from µMn ∼ 4 to 1.6 µB and an increase of the S–S distances by about
0.12 Å. For larger U , the transition pressure increases (pC ∼ 16 GPa at U − J = 3.5 eV
and GGA + U ). At too small U , the low-spin phase is stabilized. In the LDA + U , this
happens already at U − J ∼ 2 eV, in the GGA + U only in the limit of very small U (cf
figure 5 in [5]). At U − J = 8 eV on the other hand, the high-spin/low-spin transition is
completely suppressed; even under a compression of ∼30% the magnetic moment is reduced
only very slightly.

The electronic structure also shows a strong dependence on the on-site Coulomb potential.
In the pyrite structure, each TM atom is surrounded by six sulfur atoms in a slightly distorted
octahedral environment—in such an environment, the TM d band splits into the t2g and eg

manifolds. The t2g orbitals are almost perpendicular to the TM–S bonds, hence they are
essentially non-bonding. The eg orbitals extend along the direction of the Mn–S bonds and
hybridize strongly with the S 3p states. In non-magnetic TMS2 compounds the hybridization
occurs in such a way that the TM eg and S 3p levels form a broad complex of 20 bands just
below the non-bonding t2g band, in exact correspondence to the 20 bands that can be formed by
the 3pσ , 3pπ and 3pπ∗ states alone (see figure 6 in [5]). The anti-bonding TM eg–S 3p hybrids
form a group of 12 bands (four from S 3pσ ∗ and eight from the TM eg states), separated by a
narrow gap from the t2g states [2]. In FeS2, the Fermi level just falls into the gap separating the
eg and the antibonding TM eg–S 3p bands, and the compound is a narrow-gap semiconductor
and nonmagnetic. In paramagnetic MnS2 the Fermi level falls just below the upper edge of
the t2g band and the compound is metallic with a high DOS at EF . In the antiferromagnetic
low-spin phase, the spin-polarized GGA calculations predict the Fermi level to fall into a very
deep and narrow pseudo-gap in the t2g minority band. The t2g majority band is located at
about −1.2 eV and completely filled; the Mn eg–S 3p band complexes are hardly affected
by the antiferromagnetic ordering [5]. In the high-spin phase, the GGA calculations predict
an increased S sσ/sσ ∗ and S pσ/pσ ∗ bonding/anti-bonding splitting (caused by the reduced
S–S dimer bond length) and a strongly reduced Mn d–S p hybridization. For the majority-
spin states both the t2g and eg bands are fully occupied; for the minority-spin states both are
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Figure 4. Volume, bandgap, magnetic moments and the S–S distance in MnS2 plotted against
different U − J parameters. Horizontal lines mark the experimental value, if available.

empty. The Fermi level falls into a narrow (0.04 eV) gap between the occupied spin-up eg

and the empty spin-down t2g states [5]. At a small to moderate value of the on-site interaction
(U − J � 3.5 eV), the DOSs calculated in both the LDA + U and GGA + U are qualitatively
similar to the spin-polarized GGA result (see figure 6), but even for U − J ∼ 3.5 eV the
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Figure 5. Energy, magnetic moments and the S–S distance in MnS2 plotted against volume
calculated in the LDA + U and GGA + U for (a) moderate (U − J = 3.5 eV) and (b) weak
(U − J = 2 eV) correlation. The vertical line marks the experimental volume.
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Figure 6. Density of states for MnS2 calculated with GGA + U (a) and LDA + U (b), both with
U − J = 3.5 eV.

main d-band peak is located at −3.7 eV, compared to −2.8 eV in the GGA. The fact that,
for the same U , the DOSs calculated in the LDA + U and GGA + U differ only slightly
should be noted. The remaining differences are due to the different equilibrium volumes,
which lead to a somewhat smaller band-width in the GGA + U—this also helps to widen
the bandgap. This underlines the fact that a consistent description of atomic and electronic
properties can only be achieved if gradient corrections are applied before introducing the
on-site Coulomb-potential. If the intra-atomic correlation is very strong, the Mn d band is
pushed even below the lower edge of the S 3p band and the hybridization is reduced almost
to zero. Hence valence-band photoelectron spectroscopy could help to assess the strength of
correlation effects in MnS2. In addition, high-pressure experiments exploring the possibility
of a high-spin/low-spin transition could help in assessing a realistic value of U in MnS2.
Again it is important to emphasize that the GGA + U offers a more consistent picture than the
LDA + U .
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5. Fe monosulfide

At low temperature and ambient pressure, FeS assumes the troilite structure and is an
antiferromagnetic insulator (Eg = 0.04 eV) with a magnetic moment of µFe ∼ 4 µB [37].
At a temperature of Tα = 420 K, FeS transforms to the MnP-type structure, but remains
antiferromagnetic. The magnetic transition at a Néel temperature of TN = 593–598 K is
accompanied by a structural transformation to the NiAs structure. The troilite structure can
be derived from the more symmetric NiAs structure by small displacements of the Fe and S
atoms. Both the MnP and NiAs phases are stabilized under compression. Under a pressure of
3.4 GPa, the temperature for the troilite to MnP transition is lowered to 298 K; the NiAs phase
is also stabilized under compression.

The GGA calculations correctly reported the troilite structure to be more stable, but in a
low-spin antiferromagnetic state of µFe = 1.8 µB [5]. Furthermore, the calculated equilibrium
volume is underestimated by about 10%. The pressure-induced phase change to the NiAs
structure was correctly predicted and the equilibrium volume of the non-magnetic ground state
of FeS in the NiAs structure is underestimated by about 17%. The calculated antiferromagnetic
ground state of FeS in the NiAs structure with an Fe magnetic moment of 2.7 µB [5], where the
equilibrium volume is only 5% below the experimental value, is only metastable; the energy
difference is ∼ 30 meV/atom.

In the DFT + U calculations we expect an improvement in the equilibrium volume
predictions for the troilite structure, including the correct gap opening and the stabilization of
the high-spin antiferromagnetic state. Figure 7 shows the variation of the equilibrium volume,
the magnetic moment, the bandgap, the structural energy difference and the c/a-ratio for
both troilite and NiAs-type FeS as a function of U − J . The equilibrium volumes for both
phases already agree with experiment at a moderate value of the on-site Coulomb interaction
(U − J ∼ 3.5 eV in the LDA + U , U − J ∼ 1 eV in the GGA + U ); a semiconducting gap
opens at U − J ∼ 1 eV in both approximations. On the other hand, although a moderate value
of U is sufficient to create a high-spin ground state, the ‘experimental’ value of the magnetic
moment (which is identical with the upper limit set by Hund’s rule) is not reached even for very
strong correlation effects. Coey and Roux-Buisson [37] have estimated the magnetic moment
of µFe � 4 µB on the basis of Mössbauer hyperfine field data only. We suspect that our value
µFe � 3.3 µB calculated for the values of U producing the correct equilibrium volume is a
more realistic estimate. We also emphasize that a too strong on-site Coulomb repulsion leads
to a structural distortion characterized by a too low axial ratio.

Figures 8 and 9 show the variation of the total energy and of the magnetic moment of the
two competing FeS phases calculated at the optimized values of U as a function of volume
using either the LDA + U (figure 8) or the GGA + U (figure 9). From the double-tangent
construction to the energy versus volume curve a pressure-induced troilite to NiAs transition is
predicted in the LDA + U (U − J = 3.8 eV) at pC = 18.5 GPa; the transition is first order and
accompanied by a volume change of 	V = 0.54 Å3. In the GGA + U (U − J = 2 eV) and
at the value of U optimizing the agreement of most properties with experiment, the transition
pressure is reduced to pC ∼ 6 GPa and the volume discontinuity to 	V = 0.3 Å3. From x-ray
diffraction it has been estimated that the pressure-induced phase transition occurs at a volume
compression of ∼15%. This is in good agreement with the GGA + U result, whereas in the
LDA+U the transition occurs only at substantially higher compression. No substantial change
of the magnetic moment occurs at the transition, whereas the GGA calculations predicted a
transition from antiferromagnetic troilite to a nonmagnetic NiAs-type phase.

Figures 10 shows the electronic DOS of troilite, calculated in the LDA + U for U − J �
3.8 eV and in the GGA + U for U − J = 2 eV. In contrast to the spin-polarized GGA
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Figure 7. Volume, bandgap, magnetic moment, structural energy difference and c/a-ratio of the
troilite- and NiAs-type phases of FeS plotted against U − J . The experimental values are indicated
by horizontal lines.
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Figure 8. LDA + U : energy and magnetic moment plotted against volume for antiferromagnetic
FeS in the troilite and NiAs structures, calculated at U − J = 3.8 eV.

Figure 9. GGA + U : energy and magnetic moment plotted against volume for antiferromagnetic
FeS in the troilite and NiAs structures, calculated at U − J = 2 eV.
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Figure 10. The DOS for the antiferromagnetic FeS in the troilite structure calculated with LDA+U
(U − J = 3.8 eV) (a) and GGA + U (U − J = 2 eV) (b).

calculations which find troilite to be metallic, with a substantial overlap of the majority and
minority Fe 3d bands, the LDA + U and GGA + U calculations predict troilite to be a narrow
gap semiconductor with a gap of ∼1 eV. The vanishing DOS at the Fermi level is in agreement
with electronic specific-heat measurements. From ultraviolet photoemission (UPS) and x-ray
inverse photoemission experiments (XIPES), Shimada et al [38] estimated a very low gap
width of Eg ∼ 0.04 eV. A comparison between the experimental and theoretical spectra
is shown in figure 11—the theoretical spectra are approximated by the average partial DOS,
weighted with the photoionization cross-sections. The calculated spectra are dominated by the
contribution of the Fe 3d bands. The other contributions are more than a factor of 30 lower.
Figure 11 shows that in the GGA + U and for small U ∼ 2 eV the near Fermi edge part of the
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Figure 11. Valence band photoemission spectra at 40.8 eV for FeS by [38] (bold curve) together
with an estimate of the photoemission spectra calculated from the density of states (from GGA +U
calculations) with photoionization cross-sections.

spectra dominated by the minority-spin bands is rather well reproduced. The Fe 3d majority
bands, however, appear to have been shifted to too high binding energies.

6. Conclusions

We have reported results of DFT + U calculations of a wide range of physical properties of
some TMSs influenced by electronic correlation effects. We have found that when the on-
site Coulomb repulsion is added to a purely local DFT Hamiltonian described in an LSDA, a
large value of U is necessary to compensate for the overbinding characteristic for the LSDA
and for the underestimation of the magnetic moment and magnetovolume effects so as to
bring the equilibrium atomic volume into agreement with experiment. For the one-electron
energies, this large on-site Coulomb potential leads to a too large exchange splitting and a
too wide energy gap. Due to the shift of the occupied states to higher binding energies, the
calculated one-electron energies disagree with the photoemission spectra. As shown earlier [5],
the spin-polarized GGA largely, but not completely, corrects for the underestimate of the
atomic volume. If the on-site Coulomb repulsion is added to the GGA Hamiltonian, a modest
value of U is sufficient to close the gap between the theoretical and experimental volumes.
With the weaker correlation effects, a good description of structural stability, the magnetic
properties and of the electronic spectrum can be achieved as well. Our results suggest that
the DFT + U method should be used in conjunction with gradient corrections to the local
functionals. Preliminary results confirm that this conclusion also holds for other materials
with strong electronic correlations.
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